Regulation of leptin receptor‐expressing neurons in the brainstem by TRPV1

نویسندگان

  • Andrea Zsombok
  • Yanyan Jiang
  • Hong Gao
  • Imran J. Anwar
  • Kavon Rezai‐Zadeh
  • Courtney L. Enix
  • Heike Münzberg
  • Andrei V. Derbenev
چکیده

The central nervous system plays a critical role in the regulation of feeding behavior and whole-body metabolism via controlling the autonomic output to the visceral organs. Activity of the parasympathetic neurons in the dorsal motor nucleus of the vagus (DMV) determines the vagal tone and thereby modulates the function of the subdiaphragmatic organs. Leptin is highly involved in the regulation of food intake and alters neuronal excitability of brainstem neurons. Transient receptor potential vanilloid type 1 (TRPV1) has also been shown to increase neurotransmission in the brainstem and we tested the hypothesis that TRPV1 regulates presynaptic neurotransmitter release to leptin receptor-expressing (LepRb(EGFP)) DMV neurons. Whole-cell patch-clamp recordings were performed to determine the effect of TRPV1 activation on excitatory and inhibitory postsynaptic currents (EPSC, IPSC) of LepRb(EGFP) neurons in the DMV. Capsaicin, a TRPV1 agonist increased the frequency of miniature EPSCs in 50% of LepRb(EGFP) neurons without altering the frequency of miniature IPSCs in the DMV. Stomach-projecting LepRb(EGFP) neurons were identified in the DMV using the transsynaptic retrograde viral tracer PRV-614. Activation of TRPV1 increased the frequency of mEPSC in ~50% of stomach-related LepRb(EGFP) DMV neurons. These data demonstrate that TRPV1 increases excitatory neurotransmission to a subpopulation of LepRb(EGFP) DMV neurons via presynaptic mechanisms and suggest a potential interaction between TRPV1 and leptin signaling in the DMV.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leptin Directly Depolarizes Preproglucagon Neurons in the Nucleus Tractus Solitarius

OBJECTIVE Glucagon-like peptide (GLP)-1 inhibits food intake, acting both in the periphery and within the central nervous system. It is unclear if gut-derived GLP-1 can enter the brain, or whether GLP-1 from preproglucagon (PPG) cells in the lower brainstem is required to activate central GLP-1 receptors. Brainstem PPG neurons, however, have been poorly characterized, due to the difficulties in...

متن کامل

Characterization of leptin-responsive neurons in the caudal brainstem.

The central melanocortin system plays a key role in the regulation of energy homeostasis. Neurons containing the peptide precursor proopiomelanocortin (POMC) are found at two sites in the brain, the arcuate nucleus of the hypothalamus (ARC) and the caudal region of the nucleus of the solitary tract (NTS). ARC POMC neurons, which also express cocaine- and amphetamine-regulated transcript (CART),...

متن کامل

P-69: Expression of Leptin Receptor mRNA in Ovine Corpus Luteum

Background: Many hormones are involved in the regulation of reproduction. Leptin hormone which is mainly secreted by adipose tissue plays an important role in energy homeostasis and reproduction. It seems that leptin is an important linkage between body metabolism and reproductive system. Moreover, it has been shown that leptin and leptin receptor express in reproductive organs of some species....

متن کامل

Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications

Recent evidence indicates that leptin regulates appetite and energy expenditure, at least in part by inhibiting serotonin synthesis and release from brainstem neurons. To demonstrate that this pathway works postnatally, we used a conditional, brainstem-specific mouse CreER(T2) driver to show that leptin signals in brainstem neurons after birth to decrease appetite by inhibiting serotonin synthe...

متن کامل

The Mechanism of Functional Up-Regulation of P2X3 Receptors of Trigeminal Sensory Neurons in a Genetic Mouse Model of Familial Hemiplegic Migraine Type 1 (FHM-1)

A knock-in (KI) mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the α1 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014